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Lattice Boltzmann-based single-phase method for free surface
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SUMMARY

A 2D single-phase free surface tracking model, based on the lattice Boltzmann method (LBM) is developed
for simulating droplet motion. In contrast to the conventional multi-phase models, it is not necessary to
simulate the motion of the gas phase using this 2D single-phase algorithm, and thus improves the
computational efficiency without sacrificing the underlying physics. A method for special treatment of
the relevant boundary conditions in the single-phase algorithm is proposed and also validated. Numerical
simulations are carried out for the motion of a free falling droplet with or without considering gravity and
droplet spreading under gravity. The simulations of the LBM are found to be consistent with the results
obtained from commercial computational fluid dynamics (CFD) software Fluent. Copyright q 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Lattice Boltzmann method (LBM) started to attract an attention in the CFD field only recently and
it has been particularly successful in simulations of fluid flow applications involving complicated
boundaries and complex fluids. Examples can be found for the Rayleigh–Taylor instability between
two fluids in Reference [1], flows with substantial shock waves in Reference [2], processes with
chemical reaction in References [3, 4], turbulent combustion in Reference [5], particles suspended
in fluids performed by Ladd [6–8], Ladd and Verberg [9], Behrand [10], Aidun and Lu [11], and
Masselot and Chopard [12], dynamics of colloidal systems in References [13–16], flow dynamics
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in porous media in References [17–19], polymer solutions in Reference [20], mass/heat transfer
flows in References [21–25].

The simulation of flows with free surfaces is important in a variety of technical applications
such as flow through porous media, boiling dynamics and etching processes. Difficulties associated
with the simulation of these types of problems lie in modelling the interface dynamics and dealing
with the complex boundaries, as well as chemical reactions between fluid and solid surfaces. The
objective of this paper is therefore to develop an LBM-based single-phase model for simulation
of flows with free surfaces.

In the literature, several LBMmodels to simulate the interfacial dynamics have been successfully
developed in the past decade. A brief review is provided here.

(a) Colour model. The colour model proposed by Gunstensen and Rothman [26] for simulating
immiscible binary fluids is based on Lattice Gas model of Rothman and Keller [27]. The
distribution function fi on link i is assumed to be the sum of the two colour distribution
functions denoted by superscript r (red) and b (blue), fi = f ri + f bi . The distribution function
is collided according to the lattice Boltzmann equation to give the new distribution function
f ′. The new distribution function f ′ is then perturbed to an alternative value f ′′ according to
the colour gradient g(x) and the angle between the colour gradient vector and the coordinate
axes. g(x) is defined by

g(x)= ∑
i

∑
j
e j [ f rj (x + ei ) − f bi (x + ei )] (1)

where e is the velocity vector. New distribution functions for the red and blue fluid can be
then obtained by solving a maximization problem subjected to the conservation of mass and
conservation of colour.
Grunau et al. [28] extended this model to allow for a variation of density and viscosity.

D’Ortona et al. [29] studied the surface tension and wetting properties by modifying this
model and obtained good agreement with theory. Nie et al. [30] extended the model of
Gunstensen and Rothman [26] and Grunau et al. [28] for studying the two-dimensional
Rayleigh–Taylor instability, and good agreement with experimental and analytical studies
was obtained.

(b) Method of Shan and Chen. Shan and Chen [31, 32] and Shan and Doolen [33] considered a
fluid with S different components on a regular lattice. In order to include the surface tension,
they modified the LBM equation to:

f ki (x + ei , t + 1) = f ki (x, t) − f ki − f k(eq)i

�
+ ei · Fk(x) (2)

Here the force on the kth phase owing to a pairwise interaction between different phases is
given by Fk(x). fi (x, t) is the particle velocity distribution function at position x and time t
along the i th direction. � is the relaxation time. It should be noted that the collision operator
ei · Fk(x) in this model does not satisfy local momentum conservation.

(c) Free energy approach. This model was proposed by Orlandini et al. [34] and Swift et al.
[35, 36] for simulating binary fluids and liquid–gas fluids. In this model, the total density
� and the density difference �� are considered instead of using the densities of the two
separate fluids �r and �b as the colour model does. Two distribution functions fi and �i are
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then used to describe the population of � and ��, respectively, on each of the i links. Both
distribution functions are governed by the single relaxation time Boltzmann equation.
This model was used by Buick [37] and Buick et al. [38] to simulate interfacial waves

between two fluids, Xu et al. [39] to simulate phase-separating binary fluids under an
oscillatory shear, Dupuis and Yeomans [40, 41] to simulate droplets on superhydrophobic
surfaces and chemical heterogeneous surfaces, Palmer and Rector [42] to simulate thermal
two-phase flow, Takada et al. [43] to simulate bubble motion under gravity, and Zhang
et al. [44] to simulate droplet movements and continuous flows in rough and hydrophobic
microchannels. The drawback of the free energy model is that the liquid–gas model is not
Galilean invariant.

(d) Model of He et al. He et al. [1, 23] proposed a lattice Boltzmann scheme for simulation of
multiphase flows with nearly incompressible limits. In their model, the interfacial dynamics
such as phase segregation and surface tension are modelled by incorporating molecular
interactions. An index function is introduced to track interfaces between different phases.
Application to Rayleigh–Taylor instability yielded satisfactory results without any artifi-
cial reconstruction steps. This model was also validated in Reference [45] to simulate the
spreading of a liquid droplet on a heterogeneous surface.

(e) Free surface models. Besides the multiphase and multi-component models, there are a couple
of free surface models developed for simulating the moving interface between immiscible
gas and liquid fluids. The distinctive feature of the free surface models is that the stream
and collision processes are carried out only in the lattice units or cells that are occupied
partially or fully by the fluid. This significantly reduces the computational complexity of
the methods. It allows a relatively simple treatment of the free surface boundary conditions
with high computational efficiency but without sacrificing the underlying physics.

One free surface model proposed by Ginzburg and Steiner [46] assumes that the collision only
occurs on the ‘active’ cells which are fully or partially filled with fluid. The mass fraction of a cell
filled with fluid, which is between zero and one, is an additional variable. A ‘re-colouring operator’
similar to that in the model of Gunstensen and Rothman [26] determines the redistribution of fluid
mass carried by each particle population. The macroscopic variables propagate together with the
particle distribution functions in the stream step. The unknown particle distribution functions at
the front of free surfaces, which cannot be obtained by the usual LBM, are constructed by using
the first-order Chapman–Enskog expansion of the distribution functions. The drawback of this
algorithm is that the construction steps are quite complicated.

Another free surface algorithm for gas–liquid interface simulations was proposed by Thürey
[47], Thürey and Rüde [48], Thürey et al. [49], and Körner et al. [50]. It was originally developed
for the simulation of metal foams to optimize and enhance the production process. The main
character of this method is that the gas phase has negligible influence on the liquid phase and
thus is not simulated as a fluid. Then the reconstruction step becomes quite easy. Due to its
simplicity, high computational efficiency and low memory request, we will use this model as our
basic model.

This paper is organized as follows: the single-phase free surface model is introduced first. Then,
a method is proposed for special treatment of the relevant boundary conditions and incorporating
external forces like gravity. After that the validation is carried out by simulating a free falling
droplet with or without gravity and droplet spreading on a wall surface. The paper will conclude
with a discussion on the results obtained.
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2. ALGORITHM

2.1. General LBM algorithm D2Q9 BGK model

Standard lattice topology classification D2Q9 BGK model is given by [51]:

fi (x + ei , t + �t) = fi (x, t) − fi − f eqi
�

(3)

where superscript eq denotes the equilibrium state. Velocity vectors e= (0, 0), (1, 0), (0, 1),
(−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1) in lattice units are shown in Figure 1. The
density and velocity can be calculated by summation of all the distribution functions for one cell:

� =
8∑

i=0
fi , �u=

8∑
i=0

ei fi (4)

The equilibrium distribution function can be chosen as

f eqi =wi

[
� + ei · u

c2
+ (ei · u)2

2c4
− u2

2c2

]
(5)

where c2 = 1
3 , and wi = 4/9 for i = 0, wi = 1/9 for i = 1, 2, 3, 4, and wi = 1/36 for i = 5, 6, 7, 8.

2.2. Single-phase free surface model

Unlike other multi-phase models in which separate particle distribution functions are used for each
phase, the single-phase free surface algorithm does not include the gas phase in the simulation.
The different phases only use a same lattice, and are distinguished by flags for each lattice cell in
the grid. Each cell might have three types: filled (fluid) cell, interface cell or empty (gas) cell. The

Figure 1. Topology of a D2Q9 lattice.
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complicated part of this model lies in how to deal with the interface cells, which form a closed
layer between the fluid and empty cells.

In this model, tracking the free surface consists of three steps: the computation of the interface
movement, the reconstruction of the unknown distribution functions at the fluid interface streamed
from empty cells into interface cells, and the re-initialization of the cell types. The basic idea of
free surface tracking is similar to Threy’s model but the wall boundary conditions and gravity are
treated using a method proposed in this study. The overview of the algorithm by Thürey et al. [49]
is provided below.

2.2.1. Interface movement. The movement of the fluid interface is tracked by calculating the mass
m contained in each cell and the fluid fraction � which equals to the mass divided by the density
�, i.e. � =m/�. The flux between two cells can be directly computed from the values that are
streamed between two adjacent cells. For an interface cell at x and a fluid cell at (x+ ei ), the mass
flux is expressed as

�mi (x, t + �t) = fiopp(x + ei , t) − fi (x, t) (6)

Here, subscript iopp denotes the value from the reverse direction of a value with subscript i . Thus
fi and fiopp are the opposite distribution functions with reverse velocity vectors ei = − eiopp . For
instance, if i = 5, then the iopp = 7, as shown in Figure 1. The first distribution function in Equation
(6), fiopp(x+ ei , t) is the amount of fluid entering this cell in the current time step, and the second
one, fi (x, t) is the amount leaving the cell. The mass exchange for two interface cells has to
take into account the area of the fluid interface between the two cells. This is approximated by
averaging the fluid fraction values of the two cells. Hence, it is calculated by

�mi (x, t + �t) =[ fiopp(x + ei , t) − fi (x, t)] �(x + ei , t) + �(x, t)
2

(7)

Therefore, for interface cells the mass change values for all directions are added to the current
mass, resulting in the mass for the next time step:

m(x, t + �t) =m(x, t) +
8∑

i=1
mi (x, t + �t) (8)

As for filled (fluid) cells, no mass exchange computations are necessary. Their fluid fractions (�)
are always equal to one and thus their mass equals their current density.

2.2.2. Reconstruction. In this algorithm, the empty cells are never accessed. However, the interface
cells always have empty neighbours. Thus during the streaming steps, only the distribution functions
from filled or interface cells can be streamed normally. Those coming out of empty cells and entering
into interface cells need to be reconstructed since they are unknown.

If there is an interface cell at x, and an empty cell at (x+ ei ), the distribution function entering
into the interface and out of the empty cell can be expressed as

f ′
iopp(x, t + �t) = f eqi (�A,u) + f eqiopp(�A,u) − fi (x, t) (9)

where u is the velocity of the cell at position x and time t according to standard LBM notations,
while �A = 1 by assuming the gas has a default lattice density without considering the surface
tension. This can be understood in the following way: Assuming that the effect of the gas phase on
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Figure 2. Reconstruct distribution functions from empty cells.

fluid motion can be ignored, as the gas reaches equilibrium state much faster than the fluid does
due to low density. At the interface the gas moves the same way as the fluid does, so the distribution
functions that will stream from a gas (empty) cell into an interface cell can be determined by the
two opposite equilibrium distribution functions of the gas and the motion of the fluid represented
by fi (x, t). For instance, as shown in Figure 2, the cell at x is an interface cell, marked with ‘I’,
with its neighbour empty cells at x + e2 and x + e5, other neighbours are filled or interface cells.
Therefore, the distribution functions f ′

4(x, t + �t) and f ′
7(x, t + �t) at position x and time t + �t

have to be reconstructed according to Equation (9):

f ′
4(x, t + �t) = f eq4 (�(x, t),u(x, t)) + f eq2 (�(x, t),u(x, t)) − f2(x, t)

f ′
7(x, t + �t) = f eq5 (�(x, t),u(x, t)) + f eq7 (�(x, t),u(x, t)) − f5(x, t)

(10)

where �(x, t) = 1. In addition, in order to balance the forces on each side of the interface, the
distribution functions coming from the interface normal direction n (i.e. when n · ei<0) are also
reconstructed using Equation (9). The interface normal direction n is calculated with the following
central difference approximation:

n=
8∑

i=1
siei �(x + ei ) (11)

where s= 1
4 [2, 2, 2, 2, 1, 1, 1, 1] for D2Q9 BGK model.

2.2.3. Cell type re-initialization. All distribution functions for the interface cells are valid after
reconstruction, and the standard collision can be performed. The density obtained from the collision
step is now used to check whether the interface cell is new filled or new emptied during this time
step. The criteria are:

m(x, t + �t)>(1 + �)�(x, t + �t) → new filled cells

m(x, t + �t)< − ��(x, t + �t) → new emptied cells
(12)
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Here, an addition offset �= 10−3 is used instead of 0 or 1 for the empty or filling thresholds
to prevent the new surrounding interface cells from being reconverted in the following step. The
positions of the new emptied or filled cells are stored in a list instead of immediately converting
their types. The conversion will be done only when the main loop over all cells is completed.

The re-initialization step mainly takes place to new filled, new emptied cells and their neighbours.
First, for the new filled cells, all neighbouring empty cells are converted to interface cells. For each
of these cells, the average density �avg and velocity uavg of the surrounding fluid and interface cells
are computed and the distribution functions of the empty cells are initialized with the equilibrium
distribution f eqi (�avg, uavg). The flags of the new filled cells are changed into fluid or filled.
Likewise, for the new emptied cells, the surrounding cells are converted to interface cells, simply
taking the former fluid cell’s distribution functions for each corresponding new interface cell.
Secondly, the excess mass mex is distributed among the surrounding interface cells through the
following formula:

mex =m − � for new filled cells

mex =m for new emptied cells
(13)

Negative mass values or mass values larger than the density mean that the fluid interface moves
beyond the current cell during the last time step. The excess mass is weighted according to the
interface normal direction n, instead of being evenly distributed among the surrounding interface
cells. The mass of the surrounding interface cells changes by

m(x + ei , t + �t) =m(x + ei , t + �t) + mex · �i
�total

(14)

where

�i =
{
n · ei
0

if n · ei>0 for new filled cells

�i =
{−n · ei
0

if n · ei<0 for new emptied cells (15)

�total =
8∑

i=0
�i

Once the re-initialization is completed, the process can move on to the next time step.

2.3. Wall boundary conditions

For free surface problems, the wall boundaries can be decomposed into the walls in contact with
the free surface and the walls which are submerged in the liquid fluid.

The fully submerged walls can be treated in a normal way by adhering to the no-slip boundary
condition. A simple way to implement no-slip boundary conditions in the LBM is the bounce-back
rule. In this method, all distribution functions are reflected at the boundary sites, back along the
links they arrived on. Thus at a wall parallel to the direction of e1 and e3, as shown in Figure 3,
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Figure 3. No-slip boundary conditions (bounce-back rules).

the distribution function approaching the boundary on links e4, e7 and e8, will be bounced back
along the links e2, e5 and e6, respectively, resulting in f2 = f4, f5 = f7 and f6 = f8. Averaging the
velocity at the boundary, before and after the collision step, gives the required no-slip boundary
condition u= 0.

The walls in contact with the free surface should be treated carefully, since the free surface
is moving and the bounding wall is static. No introduction for treating this kind of boundaries
can be found in the literature. In this paper, we develop a compound boundary condition for the
free surface contacting solid wall as follows: Nothing needs to be done when the boundary cells
are empty. Reconstruction is needed to complement those distribution functions streaming into
the boundary cells from solid wall when the boundary cells are interface cells. This means that
the boundary cells are treated as interface cells until they are filled. Once the boundary cells are
filled, the bounce-back rule, i.e. no-slip boundary conditions will be applied. Among the wall
boundary cells, as shown in Figure 4, those marked with ‘F’ stand for filled cells, no-slip boundary
conditions as described above are applied to these cells. Those marked with ‘E’ stand for empty
cells, thus nothing is needed to do. While those marked with ‘I’ stand for interface cells, all those
distribution functions streamed from the wall cells into the interface boundary cells should be
reconstructed according to Equation (9).

2.4. Gravity force

Buick [37] proposed several methods to incorporate external forces like gravity into the LBM.
They are: (a) combining the gravity term with the pressure tensor when there is only a negligible
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Figure 4. Boundary layer cells.

change in density �, (b) calculating the equilibrium distribution functions with an altered velocity,
(c) adding an additional term to the collision function of the Boltzmann equation, and (d) a
combination of the second and third methods. The second method is adopted in this paper and is
given as below.

If a gravitational force F is applied, then at every time step there is a change of momentum
which equals to F. To incorporate this into the LBM model, the equilibrium distribution functions
are expressed as

f eqi (x, t) = f eqi (�, u∗) (16)

where u∗ is given by

�u∗ = �u + �F (17)

Details of this method can be found elsewhere [37, 52].

3. APPLICATIONS

To test the LBM-based single-phase method for free surface tracking, simulations are carried out
for studying the motion of a free falling droplet with/without gravity and droplet spreading on a
wall surface. Surface tension is not considered in this paper, and will be added in the future work.
All the test cases are compared with the results obtained by using commercial CFD software Fluent
with the VOF model. The VOF model treats all the cases mentioned above as the two-phase fluid
systems and simulates the two-phase fluid motions by solving the Navier–Stokes equations and
the convection equation for the volume ratio of the liquid phase. For VOF method, the interface
tracking is achieved by estimating the normal vector of the interface, constructing the dividing
planar surface (interface surface) in every computational grid, and propagation of the interface
by the flow. In contrast to the standard VOF method, the single-phase method mainly consists of
calculating the mass changes from the distribution function values of the LBM, reconstructing the
unknown distribution functions streamed from empty cells into the interface cells, and propagating
the interface by the flow (stream and collision steps of LBM). Details of VOF can be found in
Reference [53].
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Figure 5. Grid size independent study with droplet falling down without gravity: (a) 100 × 250 lattices;
(b) 200 × 500 lattices; and (c) 400 × 1000 lattices.

3.1. Falling droplet with/without gravity

2D free falling droplet motions are simulated in and without presence of the gravity. For case 1,
gravity is not considered. The droplet falls with a constant velocity in stationary air. Reynolds
number is chosen as Re= 8.5. For case 2, gravity is added. Initial velocity of the droplet is given
as zero. The droplet falls down under the gravity effect.

Simulation of droplet falling without gravity are carried out with three difference lattices,
100× 250, 200× 500 and 400× 1000 lattice units, respectively, to perform the grid independence
study. The results are shown in Figure 5. It can be seen that the smaller the lattice size, the
smoother the droplet shape, and thus the thinner the interface layer. The initial velocities are set as
a constant. It can be seen that the falling velocities are kept very well with three different lattice
sizes, which can be observed from the droplet positions at different times (with time intervals of
10−3 s) in Figure 5. The droplet falling distances increase linearly with time, suggesting a constant
falling velocity. However, the computational cost is quite different. The smaller the lattice size, the
higher the computational cost. The computational time using 400×1000 lattices is about 16 times
long as that when using 200×500 lattices, and about 256 times long as that when using 100×250
lattices. However, the quality of the droplet shape is quite poor with 100× 250 lattices. Therefore,
based on the grid independence study, the simulations of droplet falling with/without gravity were
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Figure 6. Results obtained from the LBM single-phase model: (a) droplet falling down without gravity;
and (b) droplet falling down under the effect of gravity.

conducted with 200 lattices in horizontal direction and 500 lattices in vertical direction. With
200 × 500 lattices, the droplet shape is smooth and the computational cost is acceptable.

The test cases include a water/air system, i.e. droplet is water and is surrounded by air. For the
LBM single-phase model, the kinematic viscosity of water is � = 10−6 m2/s, grid scale �x = √

2×
10−6 m and relaxation time � = 2.0. Since lattice viscosity �∗ = � · (�t/�x2), and it is related to
the relaxation time � through �∗ = (2� − 1)/6, the lattice viscosity �∗ = 0.5 and the time step size
�t = 10−6 s. Lattice force of gravity is given by g∗ = g ·(�t2/�x) = 9.81√

2
×10−6. These parameters

are fixed for all test cases including droplet falling and the droplet spreading.
For droplet falling cases, no gas flow field boundaries need special treatment since the single-

phase model only considers the fluid phase and ignores the gas phase. For the VOF model, the
simulations are also implemented with 200 grid cells in horizontal direction and 500 in vertical
direction. All the four boundaries are set as pressure outlet boundaries for both cases 1 and 2.
Figures 6 and 7 show the time series of snapshots of a falling droplet obtained by the LBM single-
phase model and the Fluent VOF model, respectively. Figures 6(a) and 7(a) display the results of
case 1, while Figures 6(b) and 7(b) depict the results of case 2. The time interval corresponds to
1000 time steps, namely 10−3 s for case 1 and 2000 time steps, namely 2.0 × 10−3 s for case 2.
From Figures 6 and 7, it can be seen that the droplet motions obtained by the LBM single-phase
model are quite similar to those from the Fluent VOF model, except that the shapes of the droplets
differ. The droplet shape obtained from the LBM single-phase model is not very smooth and is
deformed, which results from the absence of surface tension and relative coarse lattices chosen.
Use of finer lattices as demonstrated in the grid independence study can definitely give a smoother
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Figure 7. Results obtained from the Fluent VOF model: (a) droplet falling down without gravity;
and (b) droplet falling down under the effect of gravity.

Table I. Errors and simulation efficiencies.

Model Case Velocity error Mass error Computational cost

Single-phase model Case 1 3.75 × 10−16 1.94 × 10−15 6.53 hours/6000 time steps
Case 2 1.76 × 10−8 5.48 × 10−11 10.38 hours/14 000 time steps

VOF model Case 1 1.0 × 10−5 1.0 × 10−5 31.5 CPU hours/6000 time steps
Case 2 1.0 × 10−5 1.0 × 10−5 73.5 CPU hours/14 000 time steps

interface shape, and incorporating surface tension would fix the deformation problem. Surface
tension will be considered in our future studies.

In addition, the shape of the droplet obtained from the Fluent VOF model becomes flatter as it
approaches to the bottom boundary. It is also due to the fact that surface tension is not included
in the simulation. It is known that the presence of surface tension maintains the round shape of
the droplet. Validation has been carried out using the Fluent VOF model by the authors.

Table I compares the computational errors of the velocity and mass conservation obtained by
the single-phase model and the VOF model, as well as the computational cost of the two models.
Velocity error is defined as

velocity error=Max

⎡
⎢⎢⎣

∑
lattice or grid

simulated velocity at different time steps−
∑

lattice or grid
theoretical value

∑
lattice or grid

theoretical value

⎤
⎥⎥⎦ (18)
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Figure 8. Velocity vectors and streamlines of case 1: (a) LBM single-phase
model; and (b) Fluent VOF model.

While the mass conservation error is defined as

mass error=Max

⎡
⎢⎢⎣

∑
lattice or grid

simulated mass at different time steps−
∑

lattice or grid
initial mass

∑
lattice or grid

initial mass

⎤
⎥⎥⎦ (19)

For case 1, it only takes 6.53 CPU hours for 6000 time steps performed on Origin 3000 server for
the LBM single-phase model. The velocity error is 3.75× 10−16 and mass error is 1.94× 10−15.
While it takes 31.5 CPU hours for 6000 time steps running on Origin 3000 server for the Fluent
VOF model. For case 2, the time taken by the Fluent VOF model is about seven times longer than
that by the LBM single-phase model. The lower computational efficiency of Fluent VOF model
is due to the fact that it needs to solve the Navier–Stokes equations in the entire domain with
200×500 grid cells. Therefore, it can be concluded that the LBM single-phase model can simulate
the free surface problem at high computational efficiency when the gas phase can be ignored.

Figures 8 and 9 compare the velocity vectors and streamlines obtained by the LBM single-phase
model and the Fluent with VOF model for cases 1 and 2, respectively. Figure 8 shows the vectors
and streamlines at 3000 time steps of case 1 and Figure 9 corresponds to the results at 12 000 time
steps of case 2. As the single-phase model ignores the gas phase except that during the computation
the gas pressure at the fluid interface is applied by reconstructing the missing information from the
gas phase, no velocity field is shown in the gas phase. The Fluent VOF model however needs to
solve the Navier–Stokes equations in the entire domain with 200 × 500 grid cells, and thus gives
the flow field in terms of the velocity vectors and streamlines in both the liquid and gas phases.
Nonetheless, it is clear that both methods give similar flow fields inside the droplet. Uniform flow
fields are observed. This demonstrates that though ignorance of the gas phase effect, the LBM
single-phase model is still able to simulate free surface problems with satisfactory accuracy and
high efficiency.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:333–351
DOI: 10.1002/fld



346 X. Q. XING, D. L. BUTLER AND C. YANG

Figure 9. Velocity vectors and streamlines of case 2: (a) LBM single-phase
model; and (b) Fluent VOF model.

3.2. Droplet spreading on a wall surface under gravity

Grid independence study was also carried out for the droplet spreading problem. The simulations
show that use of 200 × 100 (horizontal × vertical) lattice units can produce grid independence
results for droplet spreading on a wall surface under gravity. The initial velocity of the droplet is
set as zero.

As for the substrate wall boundary conditions, the LBM single-phase model applies no-slip
boundary conditions for the fully submerged wall boundary cells and uses the special treatment (as
described in Section 2.3) for the wall boundary cells in contact with the free surface. In the Fluent
VOF model, no-slip boundary conditions are applied on the substrate solid wall, and pressure
outlet boundary conditions for the other boundaries. For simplicity, surface tension and wetting
are not considered in both the models, but they will be considered in our further studies. Figures
10 and 11 show the simulation results for the time evolution of the droplet shapes as it spreads
under gravity by the LBM single-phase model and the Fluent VOF model, respectively. It can
be seen that the profiles of the droplet corresponding to different times obtained from the LBM
single-phase model are virtually indistinguishable to those obtained from the Fluent VOF model.
Figure 12 shows a comparison of the droplet spreading dynamics, in terms of the dimensionless
height (defined as H/D0 and displayed as solid lines) and the dimensionless width (defined as
D/D0 and displayed as dashed lines) versus time (where D0 is the initial diameter of the droplet).
Lines with filled square symbols are the results from the Fluent VOF model and lines with triangle
symbols are from the LBM single-phase model. It is noted that there is good agreement between
the LBM model and the Fluent VOF model.

From comparison, it can be seen that both the droplet profile and the spreading dynamics obtained
from the single-phase model have very good agreement with those from the VOF model. It can
be concluded that the LBM single-phase model is successfully implemented for the simulation
of the free surface droplet spreading under gravity. It also can be noted that the interface layer
obtained by the single-phase model is quite thin compared with those obtained by the VOF model
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Figure 10. Results of droplet spreading obtained from the LBM single-phase model.

Figure 11. Results of droplet spreading obtained from the Fluent VOF model.

which can also be observed in the droplet falling cases. This is mainly because the interface cells
form a closed layer between fluid and empty cells in the single-phase model and only one layer
of interface cells form the interface layer.
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Figure 12. Comparison of spreading speed.

Figure 13. Velocity vectors and streamlines of droplet spreading: (a) LBM
single-phase model; and (b) Fluent VOF model.

Figure 13 shows a comparison between the LBM single-phase model and the Fluent VOF
model for the velocity vectors and streamlines. The symmetry of the velocity vectors and the
streamlines in both the flow fields are very good, suggesting the success of the simulations. As for
the computational cost, the VOF model needs to solve the Navier–Stokes equations to obtain the
flow field in the entire computational domain with 200 × 100 grid cells, while the single-phase
model only needs to handle the cells filled with fluid. Therefore, the computational cost of VOF
model is much higher than that of the single-phase model.

4. CONCLUSIONS

A single-phase free surface tracking algorithm-based LBMmethod has been successfully developed
and implemented to simulate the motions of a falling droplet with and without gravity and droplet
spreading on a solid surface under gravity.
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The LBM single-phase method simulations have been compared with the results obtained from
the commercial CFD software Fluent. The former ignores the gas phase; the latter treats the
free surface problem in our test cases as two-phase systems and uses VOF model to track the
fluid surface. It is found that the simulations with the LBM single-phase model are in good
agreement with those from the VOF model, suggesting that the LBM single-phase model is able to
simulate free surface problems with/without considering the gravity. The simulation results show
that the boundary conditions for the walls in contact with the free surface proposed in this study
are reasonable and can give satisfactory simulation results of droplet spreading on a wall surface
under gravity effect. Comparison also suggests the LBM single-phase model has an obvious higher
computational efficiency.
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